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Reaching biological timescales with all-atom molecular
dynamics simulations
Matthew C Zwier and Lillian T Chong
a The free energy surface of a chemical system — free energy as a

function of atomic coordinates — completely defines its dynamics; it

depends on the microscopic interactions between atoms and macro-

scopic thermodynamic variables such as temperature, volume, and

pressure.
Molecular dynamics (MD) simulations can provide atomically

detailed views of protein motions, sampling multiple timescales

ranging from femtoseconds to nanoseconds on typical

computing resources. The ‘reach’ of these computer

simulations toward biologically relevant timescales

(microseconds and beyond) has been improving with advances

in hardware and software, as well as the development of

enhanced sampling techniques. This review outlines these

advances, focusing on techniques that also provide realistic,

unperturbed kinetics. These longer-timescale MD simulations

can provide detailed insights into the mechanisms of biological

events, potentially aiding the design of pharmaceuticals.
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Introduction
Many biological processes — including enzyme catalysis,

signal transduction, and protein–protein binding —

involve protein motions that occur on multiple timescales

[1]. As illustrated in Figure 1, these motions include ps–
ns dynamics of side chains, ns–ms relative motions of

protein domains, and ms–ms allosteric transitions [2].

Furthermore, the shorter-timescale dynamics can influ-

ence and be influenced by longer timescale motions [3,4].

The flexibility of proteins and the associated ensemble of

alternate conformational states are important for many

pharmaceutically relevant species [3,5,6].

Although X-ray crystallography or NMR spectroscopy can

provide ensemble-averaged structures of certain confor-

mational states, they cannot always characterize short-lived

or unstructured species, such as transient binding pockets

[7], alternative conformations of active sites [8], or proteins

with intrinsically disordered regions [9,10], and it may be
www.sciencedirect.com
precisely those species that could lead to new classes of

pharmaceuticals [6,11]. Molecular dynamics (MD) simu-

lations can complement experiments by providing the time

resolution and atomic detail necessary for monitoring the

step-by-step progression of conformational changes (e.g.

the opening and closing of active-site protein ‘flaps’).

Given sufficient computational resources, such simulations

can span multiple timescales, revealing how fast, local

fluctuations (ps–ns) might facilitate slower, functionally

relevant collective motions of the protein (�ms), providing

detailed views of the mechanisms of conformational tran-

sitions. However, typical computing resources limit these

simulations, which ideally include explicit water mol-

ecules, to the nanosecond timescale. Thus, direct ‘brute

force’ simulations — simply running simulations for a suf-

ficiently long time (i.e. many times longer than the slowest

event of interest) — have limited use in capturing biologi-

cally relevant motions (e.g. induced-fit binding [12]). As

illustrated in Figure 1, many biologically relevant motions

(fs–ns) are readily accessible to modern computers, but

many motions which may be of interest (ms and beyond)

are far out of reach.

The desire to access biological timescales with MD

simulations has driven the development of innovative

enhanced sampling techniques. These techniques invari-

ably increase computational throughput at the cost of

introducing additional assumptions, e.g. the system under

study is strictly at equilibrium, or that initial and final

states of a transition can be unambiguously identified and

rigorously defined. Common to all these enhanced

sampling techniques is the assumption of a separation

of timescales, where a process has a long characteristic

time not because the transitions involved are slow, but

rather because the transitions are rare, with long waiting

times between otherwise fast events. It is the elimination

of this waiting time that allows these techniques to access

biologically relevant timescales.

Here, we discuss recent developments in both brute force

simulation and enhanced sampling techniques. Because

of space constraints, we have restricted our discussion to

methods which involve motion on a single, unmodified

free-energy surface.a The distinct advantage of such
Current Opinion in Pharmacology 2010, 10:745–752
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Figure 1
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Timescales of typical protein motions and estimated computational time to simulate them. Motions and their corresponding timescales are indicated

above the axis. Below the axis is a rough estimate of the amount of ‘wallclock’ time required to perform a molecular dynamics (MD) simulation of a typically

sized protein–protein complex solvated in explicit water (�45,000 atoms) on a typical (2.6 GHz dual-core) desktop computer. To capture the fastest

motions of proteins (i.e. bond vibrations), MD simulations must employ femtosecond time steps; a large number of simulation steps are therefore required

to reach biological timescales, making MD simulations of protein systems very computationally expensive. For the computer described above, tens of

nanoseconds of dynamics are accessible within weeks, but to reach the millisecond timescale would require millennia (timescales are from [2,75], except

for intermolecular diffusion, which is derived from [75] assuming 1 mM concentration of the diffusing species).

b That is, consumer-grade or business-grade general-purpose comput-

ing hardware, as opposed to specialized ‘supercomputing’ hardware.
approaches is that the dynamics of the system under study

are completely unperturbed, and furthermore, realistic

kinetic information may be readily extracted from simu-

lations; this information (e.g. kinetic rates and timescales

of motion) provides another means of validating simu-

lation with experiment. On the other hand, this admit-

tedly limited scope precludes us from discussing in detail

other promising enhanced sampling methods [2,13], in-

cluding those that under some circumstances can yield

realistic kinetic rates [14�,15�]. In preparing this review,

we found it helpful to summarize the similarities and

differences among each of the many techniques discussed

below. As shown in Figure 2, the techniques discussed

here can be grouped according to whether they provide

continuous, atomically detailed pathways of transitions

between two states or not, and also according to the

amount of a priori information required to construct a

simulation. Generally, methods that require more infor-

mation about a system involve more assumptions, but can

generate pathways (or trajectories) of the biological event

of interest with greater efficiency.

Brute force dynamics
When feasible, brute force simulations provide the great-

est possible detail with the fewest possible assumptions

relative to other MD-based sampling techniques. As

highlighted in Figure 2, very little a priori knowledge

is required to run a brute force dynamics simulation,

generally only a force field and a representative initial

structure. These are not trivial concerns, particularly as

the force field completely defines the thermodynamics of
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a system [16], and slight imbalances in force field para-

meterization can significantly alter the results of simu-

lations [17], particularly for long timescales [18]; however,

agreement with experiment is generally acceptable for

the biological questions being addressed [16,19].

Although the cost of running these brute force simu-

lations is high, computing resources continue to grow

in size and power. Continued optimization of MD soft-

ware, coupled with the decreasing cost of commodity

hardwareb — particularly multicore processors — has

played a key role in reaching microsecond timescales

for typical biological systems (e.g.�104–105 atoms), time-

scales that were inaccessible only five years ago. Further-

more, recently developed hardware specialized for

performing MD simulations is poised to generate micro-

seconds of dynamics per day on similarly sized biological

systems [19,20�].

Although the overall computing landscape has not chan-

ged dramatically in the last year, the use of general-

purpose graphics processing units (GPGPUs) in the field

of MD continues to grow (cf., e.g. [21–25]; AMBER 11,

University of California, San Francisco; GROMACS,

URL: http://www.gromacs.org; OpenMM 2.0, URL:

https://simtk.org/home/openmm). While impressive

gains in throughput are possible with GPGPUs for certain

calculations involved in an MD simulation [26], the small
www.sciencedirect.com
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Figure 2
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Techniques capable of accessing biomolecular timescales. When feasible, large-scale brute force dynamics with explicit consideration of solvent provide

the greatest possible detail with the fewest possible assumptions. Where such simulations are not possible, other enhanced sampling techniques can be

used to obtain kinetic information, transition paths, or both. In general, where increased a priori knowledge (yellow, red, and blue regions) is required to run

a simulation, greater efficiency gains compared to brute force dynamics are possible; the price of increased throughput is often a greater number of

assumptions about or restrictions on the system being simulated. For convenience, references are provided in which each enhanced sampling method

was first presented for the simulation of biochemical systems. In the case of Markov state models, the first discussion of using multiple shorter-timescale

simulations to reach longer-timescale kinetics of biological systems is cited.
on-board memory and high cost of communication with

GPGPUs has severely limited the ability of GPGPUs to

accelerate MD calculations effectively [24]. This com-

munication problem must be overcome before GPGPU-

accelerated MD calculations can hope to supplant

traditional large-scale parallel MD calculations, which

continue to provide access to long-timescales [27] and

large systems [28�].

Kinetic ‘glue’
The high computational cost of accessing biological time-

scales with brute force simulations (see Figure 1) has led
www.sciencedirect.com
to the development of several methods that attempt to

obtain long-timescale information by ‘gluing together’

shorter timescale simulations. Two examples with proven

applicability to biological systems are Markov state

models and Milestoning.

Markov state models

Markov state models (MSMs) — discrete-state kinetic

models — seek to describe the equilibrium behavior of

a system in terms of a finite number of metastable

(relatively long-lived) states and the rates of transitions

between them [29–36]. These transition networks are
Current Opinion in Pharmacology 2010, 10:745–752
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c This order parameter (also called a ‘progress coordinate’ by some

practitioners) is a scalar value which varies continuously and monoto-

nically between particular values at the initial and final states. It may,

but does not necessarily, reflect a formal reaction coordinate.
generally constructed by grouping many conformations

from multiple, relatively short brute force simulations

such that conformational transitions within states (groups)

are common but transitions between states are rare

[30,32]. The requirements for this statewise decompo-

sition of conformational space can be expressed in several

ways: firstly, the timescales for intrastate transitions are

short but the timescales for interstate transitions are long;

secondly, the probability of having moved from some

state i at time t to some other state j at time t + dt depends

only on the lag time dt; or thirdly, the probability of

moving from state i to state j does not depend on how

the system came to be in state i. It is the first property (the

separation of timescales) that enables MSMs to capture

long-timescale kinetic information from short-timescale

dynamics, and it is the lattermost property (‘memoryless-

ness’) that is perhaps most familiar as the defining prop-

erty of a Markov process, hence the name Markov state

model.

Construction of a Markov state model reduces many

individual conformations and the detailed dynamics con-

necting them into a discrete set of states, their relative

probabilities, and a matrix of (lag time-dependent) tran-

sition probabilities between each pair of states [30]. Each

state represents a distribution of quickly interconverting

conformations, which may (but need not) correspond to

experimentally well-defined populations, such as those

that might be identified by NMR spectroscopy. From the

transition probability matrix and state populations,

quantities such as the overall transition rate between

two states, the set of paths connecting them, and the

contribution of each path to the overall rate can be

calculated [34,37]. Thus, MSMs present a coarse-grained

view of both the conformational space of the system and

the dynamics within it. MSMs have been used primarily

to study protein folding mechanisms, showing good

agreement with experiment in both structural infor-

mation and folding rates [31,32,35,36,38,39,40��,41–43].

However, these models are generally applicable to the

problems of identifying kinetically distinct states of

proteins under given conditions (e.g. temperature and

ionic strength) and determining the kinetics of slow

conformational transitions. The particular strength of

MSMs may in fact be their ability to indicate native state

ensembles of structures, providing information comp-

lementary to that provided by X-ray crystallography

and NMR spectroscopy experiments.

It should be noted that short trajectories suitable for

MSM construction may be generated with replica

exchange molecular dynamics (REMD) [44], a popular

method for enhancing sampling of conformational space

[45]. Many copies (‘replicas’) of a system are simulated in

parallel with multiple temperatures, and configurations

are occasionally swapped between temperatures (typi-

cally according to a Boltzmann criterion). Although this
Current Opinion in Pharmacology 2010, 10:745–752
technique does not generally permit the extraction of

reaction rates, Markov state models can be constructed

from the brief trajectory segments between replica

exchanges, and reaction rates may then be determined

from the MSMs [14�].

Milestoning

The Milestoning approach also uses kinetic information

from shorter timescale simulations to infer long-timescale

kinetics [46,47��]. Unlike MSMs, from which definitions

of states may be obtained, Milestoning requires a priori
definitions of initial and final states and a one-dimen-

sional order parameterc that specifies ‘how far along’ a

simulation is in a transition between the initial and final

states. This order parameter is divided by a number of

surfaces (‘milestones’) and equilibrated ensembles of

simulations are prepared at each milestone. In a second

simulation phase, the constraint holding simulations to

milestone surfaces is removed, and as simulations reach

neighboring milestones, the time required by each simu-

lation to reach a neighboring milestone (in either a for-

ward or backward direction) is recorded. This simulation

between milestones — rather than between initial and

final states — effectively eliminates the waiting time that

would otherwise be sampled by brute force simulations.

The central assumption of Milestoning is that all degrees

of freedom other than the order parameter relax com-

pletely between subsequent milestones. Under this

assumption, the ‘incubation times’ between milestones,

obtained as described above, may be transformed into the

global first-passage time distribution, the probability

distribution of times required to reach the final state

from the initial state [47��]. When a single timescale

dominates a system, the first-passage time distribution

is exponential and the reaction rate is simply the inverse

of the mean first-passage time, but in a system where

multiple timescales are important, the first-passage time

distribution is capable of describing the resulting non-

exponential behavior [48], as has been demonstrated

explicitly for Milestoning simulations [46,47��]. This

added flexibility reflects the fact that the central assump-

tion of Milestoning (complete relaxation along all non-

order-parameter coordinates) is less restrictive than that

of Markov state models (where complete relaxation is

assumed in all degrees of freedom within each state).

However, the cost of this increased detail in the deter-

mination of kinetics is reduced detail in the determi-

nation of conformational states; initial and final states, the

order parameter, and adequate milestones must be

known before a Milestoning simulation of a system.

The utility of the Milestoning approach is demonstrated
www.sciencedirect.com
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well by a recent study involving the recovery stroke of

myosin (a millisecond process), which provided exper-

imentally testable mechanistic insights and a rate con-

sistent with experiment [49].

Path sampling techniques
Path sampling approaches seek to determine the detailed

dynamics of pathways between well-defined metastable

states. These techniques are complementary to MSMs

and Milestoning, which can provide definitions of meta-

stable states and detailed kinetics of transitions between

well-defined metastable states, respectively. The most

widely used methods in recent years are transition path

sampling (TPS) and its variants, such as transition inter-

face sampling (TIS); forward flux sampling (FFS); and

weighted ensemble (WE) sampling.

Transition path sampling

TPS, which is based on early work by Pratt [50], was first

presented more than a decade ago [51] and has sub-

sequently been extensively employed, refined, and

reviewed [52,53,54�,55�]. TPS is a Monte Carlo sampling

of MD-simulated paths between initial and final states,

which (as highlighted in Figure 2) must be known a
priori. Each path is typically generated by randomly

selecting a segment of the previously sampled path,

perturbing its coordinates and/or momenta, and then

‘shooting off’ MD trajectories both forward and backward

in time from the perturbed segment [53]; thus, this

scheme requires the dynamics of the system to be invar-

iant under time reversal, i.e. the system must be at

equilibrium [54]. The resulting set of paths between

the initial and final states and their relative probabilities

provide a detailed picture of how transitions between the

initial and final states progress. TPS does not directly

provide kinetic information; rather, a subsequent (com-

putationally expensive) umbrella sampling calculation is

required [53], a limitation which led directly to the de-

velopment of TIS (discussed below). As with all path

sampling methods, the presence of long-lived intermedi-

ate states [56] or multiple distinct transition pathways

separated by substantial free-energy barriers (Zhang, et
al., unpublished data; URL: http://arxiv.org/abs/

0902.2772) may severely reduce the effectiveness of

TPS. Nonetheless, TPS is capable of describing rare

transitions in biological systems. Recently, TPS was used

to determine the pathways of conformational change in

the activation of photoactive yellow protein (PYP), pre-

dicting experimentally detectable intermediates and

suggesting experiments which can be used to validate

the TPS results [57]. In a striking combination of a

number of enhanced sampling techniques, TPS was used

to determine the pathways of conformational change in

folding and unfolding mechanisms of formin binding

protein 28 (FBP28) and then map the free energy land-

scape of the protein; the computed unfolding barrier is in

agreement with experiment [58��].
www.sciencedirect.com
Transition interface sampling

The high computational cost of obtaining kinetic infor-

mation with TPS inspired the development of TIS and

several variants thereof [59–61]. TIS, along with FFS and

WE, partitions an order parameter connecting initial and

final states with several dividing surfaces (‘interfaces’);

this again represents an increase in the amount of infor-

mation required to start a simulation (see Figure 2). In

TIS, a Monte Carlo procedure highly similar to TPS —

including forward and backward shooting of MD trajec-

tories — is used to sample paths between each pair of

adjacent interfaces; the reaction rate is then determined

by the flux out of the initial state and the conditional

probabilities of reaching each interface in turn [62]. In this

way, the paths and transition rate between initial and final

states are determined simultaneously. Interface-based

sampling methods like TIS may suffer greatly in effi-

ciency if significant free energy barriers exist between

interfaces, particularly if the barriers must be surmounted

in order to reach the next interface [63].

Forward flux sampling

The FFS method was presented as an alternative to TPS

and TIS without the requirement of microscopic rever-

sibility, thus allowing path sampling studies of none-

quilibrium systems [54�,55�,64–66]. Like TIS, FFS

requires well-defined initial and final states, an order

parameter describing the transition between them, and

partitioning of the order parameter by interfaces. Rather

than using Monte Carlo techniques to sample transition

paths, MD simulations — propagating forward in time

only — are used to determine the paths between inter-

faces. When a dynamics trajectory reaches an interface, its

coordinates and momenta at the interface are saved, then

used to start a number of new simulations from the

interface. The reaction rate is calculated in terms of a

set of conditional crossing probabilities, and transition

paths between initial and final states may be obtained by

tracing completed paths from the final state back to the

initial state [65]. As in TIS and WE, high barriers between

interfaces may cause a sharp drop in sampling efficiency,

as simulations can progress to the next interface only

rarely [63]. A particularly interesting feature of FFS is the

existence of well-defined estimates for computational

efficiency as functions of FFS simulation parameters

(e.g. the number of interfaces), allowing for selection

of efficient parameters [67,68]. FFS has been used prim-

arily in simplified models of various systems (cf.

[54�,55�]), but it has also been applied to an all-atom

folding simulation of the trp-cage mini-protein [69].

Weighted ensemble sampling

The WE sampling technique is conceptually quite similar

to FFS, though it predates FFS by nearly a decade [70].

Originally conceived to accelerate sampling in Brownian

dynamics simulations [70–72], WE sampling is asympto-

tically correct for a much broader class of stochastic simu-
Current Opinion in Pharmacology 2010, 10:745–752
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lations, including MD simulations [73]. WE sampling uses

independent simulations, each carrying a statistical weight,

to explore conformational space. Like TIS and FFS, WE

sampling requires definitions of initial and final states, an

order parameter, and the partitioning of space along the

order parameter into bins. Simulations are propagated for a

fixed time period, after which a statistically rigorous

reweighting procedure is used to keep the number of

simulations in each bin constant without altering the total

probability in each bin. Thus, as unoccupied bins become

populated, more simulations are created with which to

explore that region of phase space, and as simulations cross

backwards into previously traversed bins, they will likely

be eliminated, reducing oversampling. As simulations

reach the destination state, their probability weights are

recycled to the initial state, establishing a steady-state flow

of probability from the initial state to the final state. The

resulting transition paths are continuous, and the macro-

scopic reaction rate is obtained simultaneously as the net

flow of probability into the destination state [70]. WE

sampling has a theoretical and algorithmic framework that

naturally supports more than one order parameter, making

it an attractive option for sampling rare events in systems

that cannot be described with a single order parameter [63].

Achievement of a steady-state probability flow from the

initial state to the final state may be accelerated using

concepts developed from nonequilibrium umbrella

sampling, partially ameliorating the difficulty shared by

WE, TIS, and FFS of surmounting barriers between

interfaces (i.e. within bins) [63].

WE sampling in the context of a residue-based Monte

Carlo simulation has recently been used to study the

kinetics and conformational transitions between the

apo and holo forms of calmodulin, showing excellent

agreement and efficiency gains compared to brute force

Monte Carlo sampling [74�]. Our own group has recently

determined that WE sampling in conjunction with MD

simulations is up to three orders of magnitude more

efficient than brute force simulations in modeling simple

molecular association events (methane/methane,

methane/benzene, Na+/Cl�, and 18-crown-6/K+) in expli-

cit water, indicating that this approach is a promising one

for studying protein/small molecule and protein/protein

interactions.

Conclusions
Conformational changes in biologically relevant systems

span an enormous range of timescales, from picosecond

dynamics of side chains through microsecond or slower

dynamics of coordinated conformational transitions. All-

atom MD simulations have typically been limited by

computing power to microseconds of simulation time

or less. Even so, with increasing computing power, brute

force MD simulations continue to provide detailed views

on biologically relevant conformational transitions.

Additionally, a number of enhanced sampling techniques
Current Opinion in Pharmacology 2010, 10:745–752
have matured to the point of reaching biological time-

scales with MD simulations. The most promising avenue

for exploration of the dynamics and kinetics of pharma-

cologically relevant systems appears not to be any single

MD sampling technique, but combinations of techniques

that, when used together, yield far more information than

any technique alone (e.g. [58��]). With advances in simu-

lation approaches and computing power, MD simulation

is becoming increasingly useful in providing detailed

structural and mechanistic insight into biologically

relevant events that are of pharmaceutical interest.
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